As mudanças climáticas estão transformando as demandas energéticas dos edifícios, especialmente em habitações de interesse social, posicionando as estratégias passivas de design como soluções sustentáveis e viáveis. Esta revisão sistemática analisa 42 publicações (2017 – 2024) com o objetivo de examinar e discutir o estado da arte sobre as estratégias passivas de design aplicadas a habitações de interesse social em climas temperados semiáridos frios, identificar estratégias eficazes e avaliar as barreiras para sua implementação. O estudo está estruturado em três dimensões principais: adaptabilidade climática, eficiência energética e viabilidade econômica. A análise indica que, entre as estratégias mais destacadas, a ventilação natural e noturna (71%) e o sombreamento (55%) são fundamentais para mitigar o superaquecimento. Este trabalho oferece uma perspectiva integrada, raramente abordada em estudos anteriores, e propõe linhas de pesquisa futuras para suprir lacunas existentes, como a falta de análises custo-benefício a longo prazo em cenários de mudanças climáticas, a necessidade de avaliações do ciclo de vida e o desenvolvimento de ferramentas de financiamento acessíveis. Em conclusão, esta revisão contribui para a compreensão de soluções habitacionais sustentáveis e equitativas, integrando o conforto térmico com estratégias para combater a pobreza energética em contextos de alta vulnerabilidade climática.
Adua, L., Asamoah, A., Barrows, J., Brookstein, P., Chen, B., Coleman, D. R., Denzer, A., Desjarlais, A. O., Falconer, W., Fernandes, L., Fisler, D., Foley, C., Gaillard, C., Gladen, A., Guzowski, M., Hill, T., Hun, D., Kishore, R., Klingenberg, K., … Walker, A. (2024). Ambient energy for buildings: Beyond energy efficiency. Solar Compass, 11, 100076. https://doi.org/10.1016/j.solcom.2024.100076
Arcas-Abella, J., Pagès-Ramon, A., y Casals-Tres, M. (2011). El futuro del hábitat: repensando la habitabilidad desde la sostenibilidad. El caso español. Revista INVI N°26, 26(72), 65–93. https://doi.org/10.4067/S0718-83582011000200003
Ascione, F., de Rossi, F., Iovane, T., Manniti, G., y Mastellone, M. (2024). Energy demand and air quality in social housing buildings: A novel critical review. Energy and Buildings, 319. https://doi.org/10.1016/j.enbuild.2024.114542
Avendaño-Vera, C., Martinez-Soto, A., y Marincioni, V. (2020). Determination of optimal thermal inertia of building materials for housing in different Chilean climate zones. Renewable and Sustainable Energy Reviews, 131. https://doi.org/10.1016/j.rser.2020.110031
Azimi Fereidani, N., Rodrigues, E., y Gaspar, A. R. (2021). A review of the energy implications of passive building design and active measures under climate change in the Middle East. Journal of Cleaner Production, 305, 127152. https://doi.org/10.1016/j.jclepro.2021.127152
Barea, G., Ganem, C., y Esteves, A. (2017). The multi-azimuthal window as a passive solar system: A study of heat gain for the rational use of energy. Energy and Buildings, 144, 251–261. https://doi.org/10.1016/j.enbuild.2017.03.059
Barea, G., Karlen, C. G., Molina, M. C., y Mateo, P. (2023). Efectividad a futuro de las estrategias de diseño pasivas en viviendas. Habitat Sustentable, 13(1), 30–41. https://doi.org/10.22320/07190700.2023.13.01.03
Ben-Alon, L. y Rempel, A. R. (2023). Thermal comfort and passive survivability in earthen buildings. Building and Environment, 238, 110339. https://doi.org/10.1016/j.buildenv.2023.110339
Bhamare, D. K., Rathod, M. K., y Banerjee, J. (2019). Passive cooling techniques for building and their applicability in different climatic zones—The state of art. En Energy and Buildings, 198, 467–490. https://doi.org/10.1016/j.enbuild.2019.06.023
Boardman, B. (1991). Fuel poverty is different. Policy Studies, 12(4), 30–41. https://doi.org/10.1080/01442879108423600
Caldas, P., Aranda, E., y Dongo, C. (2019). Adaptación climática de barrios de vivienda social en una ciudad árida Piura. TECNIA, 29(1). https://doi.org/10.21754/tecnia.v29i1.328
Cantón, M. A., Ganem, C., Barea, G., y Llano, J. F. (2014). Courtyards as a passive strategy in semi dry areas. Assessment of summer energy and thermal conditions in a refurbished school building. Renewable Energy, 69, 437–446. https://doi.org/10.1016/J.RENENE.2014.03.065
Carlosena, L., Ruiz-Pardo, Á., Rodríguez-Jara, E. Á., y Santamouris, M. (2023). Worldwide potential of emissive materials based radiative cooling technologies to mitigate urban overheating. Building and Environment, 243, 110694. https://doi.org/10.1016/j.buildenv.2023.110694
Cavka, B. T. y Ek, M. (2018). Future weather files to support climate resilient building design in Vancouver. University of British Columbia. https://doi.org/10.14288/1.0374203
Chalmers, P. (2015). Cambio climático implicaciones para los edificios. Hallazgos claves del quinto informe de evaluación del IPCC. University of Cambridge.
Chen, Y., Gao, J., Yang, J., Berardi, U., y Cui, G. (2023). An hour-ahead predictive control strategy for maximizing natural ventilation in passive buildings based on weather forecasting. Applied Energy, 333, 120613. https://doi.org/10.1016/j.apenergy.2022.120613
D’Amanzo, M., Mercado, M. V., y Karlen, C. G. (2020). 10 preguntas de los edificios energía cero: revisión del estado del arte. Habitat Sustentable, 10(2), 24–41. https://doi.org/10.22320/07190700.2020.10.02.02
Diz-Mellado, E., López-Cabeza, V. P., Rivera-Gómez, C., y Galán-Marín, C. (2023). Performance evaluation and users’ perception of courtyards role in indoor areas of mediterranean social housing. Journal of Environmental Management, 345, 118788. https://doi.org/10.1016/j.jenvman.2023.118788
Dong, W. S., Ismailluddin, A., Yun, L. S., Ariffin, E. H., Saengsupavanich, C., Abdul Maulud, K. N., Ramli, M. Z., Miskon, M. F., Jeofry, M. H., Mohamed, J., Mohd, F. A., Hamzah, S. B., y Yunus, K. (2024). The impact of climate change on coastal erosion in Southeast Asia and the compelling need to establish robust adaptation strategies. Heliyon, 10(4), e25609. https://doi.org/10.1016/j.heliyon.2024.e25609
Duan, Z., de Wilde, P., Attia, S., y Zuo, J. (2024). Prospect of energy conservation measures (ECMs) in buildings subject to climate change: A systematic review. Energy and Buildings, 322, 114739. https://doi.org/10.1016/J.ENBUILD.2024.114739
Durán, R. y Condorí, M. (2019). Evolución de la pobreza energética en Argentina durante el período 2002 - 2018. Oportunidades para las energías renovables. Extensionismo, Innovación y Transferencia Tecnológica, 5, 430–437.https://doi.org/10.30972/eitt.503780
Felmer Plominsky, G., Martínez Arias, A., Rivera, M. I., y Zepeda-Gil, C. (2023). Pobreza energética en contextos de exclusión urbana: nuevos enfoques para la acción desde América Latina. Revista INVI, 38(109), 1–16. https://doi.org/10.5354/0718-8358.2023.72446
Fernández, J. D. y Pesantez, B. X. (2018). Diseño térmico de edificaciones resilientes al cambio climático [tesis de grado]. Escuela Superior Politécnica del Litoral, Guayaquil. http://www.dspace.espol.edu.ec/xmlui/handle/123456789/4699 2
Fernández, K., Lezcano, L., y González, A. (2023). Medición de la pobreza energética con enfoque multidimensional: revisión sistemática de la literatura. Revista INVI, 38(109), 172–208. https://doi.org/10.5354/0718-8358.2023.70574
Filippín, C., Ricard, F., Flores Larsen, S., y Santamouris, M. (2017). Retrospective analysis of the energy consumption of single-family dwellings in central Argentina. Retrofitting and adaptation to the climate change. Renewable Energy, 101, 1226–1241. https://doi.org/10.1016/J.RENENE.2016.09.064
Flores-Larsen, S., Filippín, C., y Barea, G. (2019). Impact of climate change on energy use and bioclimatic design of residential buildings in the 21st century in Argentina. Energy and Buildings, 184, 216–229. https://doi.org/10.1016/j.enbuild.2018.12.015
Flores-Larsen, S., Filippín, C., y Bre, F. (2023). New metrics for thermal resilience of passive buildings during heat events. Building and Environment, 230, 109990. https://doi.org/10.1016/j.buildenv.2023.109990
Ganem, C. K. y Barea, G. J. P. (2021). A methodology for assessing the impact of climate change on building energy consumption. En M. Palme y A. Salvati (Eds.), Urban microclimate modelling for comfort and energy studies, (pp. 363–381). Springer. https://doi.org/10.1007/978-3-030-65421-4_17
Guo, Z., Zhang, W., Deng, G., y Guan, Y. (2024). The impact of window opening behavior on the indoor thermal environment and coping strategies in passive houses. Energy and Built Environment. https://doi.org/10.1016/j.enbenv.2024.04.003
Gupta, V. y Deb, C. (2023). Envelope design for low-energy buildings in the tropics: A review. En Renewable and Sustainable Energy Reviews, 186, 113650. https://doi.org/10.1016/j.rser.2023.113650
Hampo, C. C., Schinasi, L. H., y Hoque, S. (2024). Surviving indoor heat stress in United States: A comprehensive review exploring the impact of overheating on the thermal comfort, health, and social economic factors of occupants. Heliyon, 10(3), e25801. https://doi.org/10.1016/j.heliyon.2024.e25801
Harkouss, F., Fardoun, F., y Biwole, P. H. (2018). Passive design optimization of low energy buildings in different climates. Energy, 165, 591–613. https://doi.org/10.1016/j.energy.2018.09.019
Huertas Angulo, L. E. (2019). Estudio del microclima en espacios de transición como recurso pasivo de acondicionamiento. Aplicación a casos de vivienda social [Trabajo máster]. Universidad de Sevilla, Sevilla. https://hdl.handle.net/11441/105609
Intergovernmental Panel on Climate Change. (2023a). Climate change 2022 – impacts, adaptation and vulnerability: Working group II contribution to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press. https://doi.org/10.1017/9781009325844
Intergovernmental Panel on Climate Change. (2023b). Climate change 2023: Synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change. https://doi.org/10.59327/IPCC/AR6-9789291691647
International Energy Agency. (2024). World energy outlook 2024. https://www.iea.org/reports/world-energy-outlook-2024
Jan, K. A., Rather, A. A., y Balaji, R. (2023). The path to climate sustainability: A review of IPCC 2022. Global Sustainability Research, 2(1), 38–45. https://doi.org/10.56556/gssr.v2i1.429
Jayalath, A., Vaz-Serra, P., Hui, F. K. P., y Aye, L. (2024). Thermally comfortable energy efficient affordable houses: A review. Building and Environment, 256, 111495. https://doi.org/10.1016/j.buildenv.2024.111495
Kottek, M., Grieser, J., Beck, C., Rudolf, B., y Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130
La economía del donut [infografía]. (2018, 28 de agosto). Caja Rural Central. https://blog.ruralcentral.es/economia-donut/
Liu, L., Hammami, N., Trovalet, L., Bigot, D., Habas, J.-P., y Malet-Damour, B. (2022). Description of phase change materials (PCMs) used in buildings under various climates: a review. Journal of Energy Storage, 56(A), 105760. https://doi.org/10.1016/j.est.2022.105760
Mejica, M. S. A., Gil, M. L., Mendoza, M., y Zapata, M. C. (2008). Córdoba y Mendoza: Dos casos para pensar la producción social del hábitat. Revista INVI, 23(62), 21–73.
Okushima, S. (2016). Measuring energy poverty in Japan, 2004–2013. Energy Policy, 98, 557–564. https://doi.org/10.1016/j.enpol.2016.09.005
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372. https://doi.org/10.1136/BMJ.N71
Pajek, L., Potočnik, J., y Košir, M. (2022). The effect of a warming climate on the relevance of passive design measures for heating and cooling of European single-family detached buildings. Energy and Buildings, 261, 111947. https://doi.org/10.1016/j.enbuild.2022.111947
Park, B., Rempel, A. R., y Mishra, S. (2023). Performance, robustness, and portability of imitation-assisted reinforcement learning policies for shading and natural ventilation control. Applied Energy, 347, 121364. https://doi.org/10.1016/j.apenergy.2023.121364
Piña Hernández, E. H. (2018). Prototipo de vivienda vertical social sustentable, enfoque en resistencia al cambio climático. Revista INVI, 33(92); 213-237. https://doi.org/10.4067/S0718-83582018000100213
Raworth, K. (2018). Doughnut economics: Seven ways to think like a 21st century economist. Chelsea Green Publishing.
Rempel, A. R., Danis, J., Rempel, A. W., Fowler, M., y Mishra, S. (2022). Improving the passive survivability of residential buildings during extreme heat events in the Pacific Northwest. Applied Energy, 321, 119323. https://doi.org/10.1016/j.apenergy.2022.119323
Rodrigues, E., Fereidani, N. A., Fernandes, M. S., y Gaspar, A. R. (2023). Climate change and ideal thermal transmittance of residential buildings in Iran. Journal of Building Engineering, 74, 106919. https://doi.org/10.1016/j.jobe.2023.106919
Roshan, G. R., Oji, R., y Attia, S. (2019). Projecting the impact of climate change on design recommendations for residential buildings in Iran. Building and Environment, 155, 283–297. https://doi.org/10.1016/j.buildenv.2019.03.053
Sánchez, M. N., Soutullo, S., Olmedo, R., Bravo, D., Castaño, S., y Jiménez, M. J. (2020). An experimental methodology to assess the climate impact on the energy performance of buildings: A ten-year evaluation in temperate and cold desert areas. Applied Energy, 264, 114730. https://doi.org/10.1016/j.apenergy.2020.114730
Seo, J., Choi, M., Yoon, S., y Lee, B. J. (2023). Climate-dependent optimization of radiative cooling structures for year-round cold energy harvesting. Renewable Energy, 217, 119166. https://doi.org/10.1016/j.renene.2023.119166
Sharbaf, S. A. y Schneider-Marin, P. (2025). Cost-benefit analysis of sustainable upgrades in existing buildings: A critical review. Energy and Buildings, 328, 115142. https://doi.org/10.1016/J.ENBUILD.2024.115142
Shen, P., Braham, W., y Yi, Y. (2019). The feasibility and importance of considering climate change impacts in building retrofit analysis. Applied Energy, 233–234, 254–270. https://doi.org/10.1016/J.APENERGY.2018.10.041
Shen, P. y Lior, N. (2016). Vulnerability to climate change impacts of present renewable energy systems designed for achieving net-zero energy buildings. Energy, 114, 1288–1305. https://doi.org/10.1016/j.energy.2016.07.078
Soflaei, F., Shokouhian, M., y Soflaei, A. (2017). Traditional courtyard houses as a model for sustainable design: A case study on BWhs mesoclimate of Iran. Frontiers of Architectural Research, 6(3), 329–345. https://doi.org/10.1016/j.foar.2017.04.004
Soflaei, F., Shokouhian, M., Tabadkani, A., Moslehi, H., y Berardi, U. (2020). A simulation-based model for courtyard housing design based on adaptive thermal comfort. Journal of Building Engineering, 31, 101335. https://doi.org/10.1016/j.jobe.2020.101335
Soutullo, S., Sánchez, M. N., Enríquez, R., Olmedo, R., y Jimenez, M. J. (2017). Bioclimatic vs conventional building: Experimental quantification of the thermal improvements. Energy Procedia, 122, 823–828. https://doi.org/10.1016/j.egypro.2017.07.413
Tajuddeen, I. y Sajjadian, S. M. (2024). Climate change and the built environment - a systematic review. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-024-04962-2
Viñuela, J., Chévez, P., Martini, I., y San Juan, G. (2021). Fundamentos y metodología de encuesta para análisis y evaluación de hogares en condiciones de pobreza energética. Avances en Energías Renovables y Medio Ambiente - AVERMA, 25, 315–326. https://portalderevistas.unsa.edu.ar/index.php/averma/article/view/2427
Wei, J., Li, H. X., Sadick, A. M., y Noguchi, M. (2024). A systematic review of key issues influencing the environmental performance of social housing. Energy and Buildings, 319, 114566. https://doi.org/10.1016/j.enbuild.2024.114566
Zhai, Z. J. y Helman, J. M. (2019). Implications of climate changes to building energy and design. Sustainable Cities and Society, 44, 511–519. https://doi.org/10.1016/j.scs.2018.10.043